Dpb11 and 9-1-1 Complex Act Redundantly in Promoting Checkpoint Activation after Replication Stress

Fabio Puddu, Gabriele Piergiovanni, Paolo Plevani & Marco Muzi-Falconi

Department of Biomolecular Sciences and Biotechnology, University of Milano, Via Celoria 26, 20133 Milan, Italy, EU

Following DNA damage or replication stress eukaryotic cells phosphorylate and activate the Rad53 (hChk2) checkpoint protein, which is responsible for maintaining genome stability in these challenging conditions. The activation or DNA Damage Checkpoint and Replication Checkpoint is different, but partially overlapping because most of checkpoint factors are shared between these pathways. For the activation of these two checkpoints the upstream kinase complex Mec1/Ddc2 (hATR/hATRIP) is required and both the PCNA-like complex and the replicative factor Dpb11 (hTopBP1) play a relevant role. We have previously shown that in UV damaged yeast cells, Dpb11 is required for the histone methylation-independent function of Rad9. Dpb11 has been recently reported to be able to stimulate in vitro Mec1 kinase activity. To better understand in vivo the function of Dpb11 in activating the apical kinase, we decided to study checkpoint activation after treatment with hydroxyurea (HU), a RNR inhibitor. In act, HU induces Rad53 phosphorylation independently of the Rad9 adaptor protein allowing us to study the function of Dpb11 in the activation of Mec1 and its interplay with 9-1-1 complex (Ddc1-Mec3-Rad17). We show here that a ddc1∆dpb11-1 double mutant displays a Rad53 phosphorylation defect after HU treatment, similar to the one of a mec1-1 mutant. Unexpectedly the double mutant also lacks the hyperphosphorylation of histone H2A, which is maintained in mec1-1. These observations suggest that Dpb11 and the PCNA-like complex act independently in promoting Mec1 and Tel1 activation. Moreover a similar phenotype can be observed in a dpb4∆ddc1∆ strain which carry a deletion of a non-essential subunit of DNA polymerase ε , suggesting that Dpb11 may be working together with Pol ε in this function.

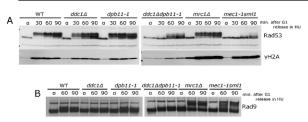


Fig.1 Ddc1 and Dpb11 cooperate for checkpoint activation after replication stress. The indicated yeast strains were synchronized with o-factor in G1 and released in fresh medium containing 200 mM HU. At different time points after release Red53, r2A and Red9 phosphorylation was analysed. (A) The mutants ddc1d and ddb11-1 are mildly defective in Rad53 phosphorylation, while the double mutant displays a greater defect, similar to the one of a mec-1 mutant. (B) (D) weapcetely ddc1ddb11-1 gloss PLAP hyperphosphorylation characteristic of the mec1-1 strain. Moreover whereas in both mec1-1 and mrc1A Rad9 is hyperphosphorylated, indicating the activation of the DNA damage checkpoint, the double mutant doc1dadb11-1 locks this Rad9 5hift, suggesting either the absence or the incapacity to detect DNA damage.

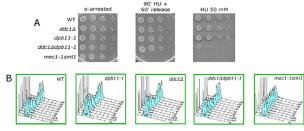


Fig. 2 Mutant cells are proficient in replication fork stabilization after replication stress.

(A) The indicator yeast strains were tested for sensitivity to replication inhibition. Cells were synchronized with a-factor in Albition in Cells were synchronized with a-factor in containing a compared of the containing and the compared of the containing and an experiment of DNA replication. Then serial cligions were spotted ortho YPO plates. In parallel the sense strains were spotted onto YPO plates containing 50 mM HU. Similarly to the single mutants, doct.ddpb1/1-1 is not sensitive to a HU pulse treatment. However when chronically exposed to replication strains, the double mutant becomes deeply sensitive. (3) The same strains, treated with HU as described before were also released in fresh medium supplemented with nocotacle. Every 20 minutes after the release, DNA content was measured by FAGS analysis to evaluate the ability of the cells to extra replication. WT, ddc1d, dpb1/1-1 and ddc1ddpb1/1-1 strains are able to duplicate their genome once released in HU-free medium, indicating the ability to maintain stabled replication fork in a competent state. These data suggest that the double mutant is proficient in replication fork stabilization after HU treatment.

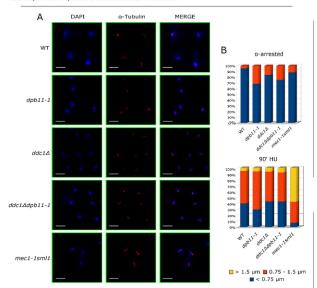


Fig. 3 Mutant cells are proficient in the activation of replication checkpoint.

The indicated yeast strains were synchronized with o-factor in G1 and released in rich medium containing 200 mM HU to analyse spindle elongation. (A) 90 minutes after the release, nuclear morphology was visualized by DAPI staining and microtubules were visualized by indirect immunofluorescence using anti o-tubulin antibodies. Scale bars, 5 µm. (B) Spindle length in 250 cells for each samples was measured in the o-factor arrested samples and in the 90° HU samples. Data obtained are summarized into two charts showing the percentage of cells belonging to the indicated spindle length classes. Under these conditions only the two charts showing the percentage of cells belonging to the indicated spindle length classes. Under these conditions only the two charts showing the percentage of cells belonging to the indicated spindle length classes. Under these conditions only the two charts showing the percentage of cells belonging to the indicated spindle length classes. Under these conditions only the two charts showing the percentage of cells belonging to the indicated spindle length classes. Under these conditions only the two charts showing the percentage of cells belonging to the indicated spindle length classes. Under these conditions only the two charts showing the percentage of cells belonging to the profit of the percentage of cells belonging to the percentage of the position of the percentage of the perc

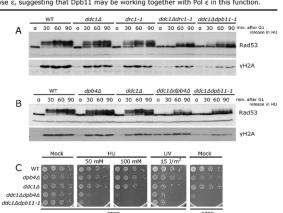


Fig.4 Dpb4 and Drc1/Sld2 are involved in the Dpb11-dependent branch of replication checkpoint activation.

activation. The indicated yeast strains were synchronized with o-factor in G1 and released in fresh medium containing 200 mM HIU. At different time points after release Rad53 and H2A phosphorylation was analysed. (A) The mutant drc1-1 is mildly defective in Rad53 phosphorylation as published, while the double mutant drc2-1 drdc1-1 has the same Rad53 phosphorylation shows a similar behaviour. (B) The same experiment was repeated analysing the mutant dpb4. dpb4 is mildly defective in Rad53 phosphorylation, almost as the ddc1.0 while the double mutant ddc1.0 dpb4 is mildly defective in Rad53 phosphorylation, almost as the ddc1.0 while the double mutant ddc1.0 dpb4 is mildly defective in Rad53 phosphorylation, almost as the ddc1.0 while the double mutant ddc1.0 dpb4 is mildly defective in Rad53 phosphorylation is greater in ddc1.0 dpb4 than in ddc1.0 dpb11-1 probably because in ddc1.0 dpb4 the histone is phosphorylation as greater in ddc1.0 dpb4 than in ddc1.0 dpb11-1 probably because in ddc1.0 dpb4 the histone is phosphorylation as on untreated conditions. (C) The same strains were as tested for sensitivity to reglication ribbition, D4A demage or right growth temperature. The sensitivity to IVI is synergic between thermosensitive, but in damaging conditions D4D legy the most important rofe. Interestingly the double mutant rofe.1 dpb9 the most important rofe. Interestingly the double mutant rofe.2 dpb9 the most important rofe. Interestingly the double mutant rofe.2 dpb9 the most important rofe. Interestingly the double mutant rofe.2 dpb9 the most important rofe. Interestingly the double mutant rofe.2 dpb9 the most important rofe. Interestingly the double mutant rofe.2 dpb9 the most important rofe. Interestingly the double mutant rofe.2 dpb9 the most important rofe. Interestingly the double mutant rofe.2 dpb9 the most important rofe. Interestingly the double mutant rofe.2 dpb9 the most important rofe. Interestingly the double mutant rofe.2 dpb9 the most important rofe. Interestingly the double mutant rofe.2 dpb9 the

WT

<u>tel1Δ</u> <u>mec1-1</u> <u>mec1-1tel1Δ</u> a 30 60 90 a 30 60 90 a 30 60 90

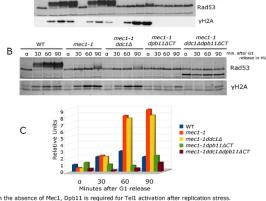


Fig. 5. In the absence of Mecl., Dpb1.1 is required for Tell. activation after replication stress. The indicated yeast strains were synchronized with or-factor in GI and released in fresh medium containing 200 mM HIJ. At different time points after release, RadS3 and H2A phosphorylation was analysed. Mutation in SML1 to allow mecl.-1 viability is not indicated. (A) The HU induced PL2A phosphorylation and the residual RadS3 activation, in the absence of Mecl activity, depend on the Tell kinese. (B) The double mutant mecl-idpb11ACT is completely defective in HU induced RadS3 and H2A phosphorylation, while the double mutant mecl-idpb11ACT is completely defective in HU induced RadS3 and H2A phosphorylation, while the double mutant mecl-idpb11ACT is completely defective in HU induced PLAD phosphorylation. The HU induced H2A phosphorylation in mecl-1 strain depends on Dpb11 but not on Ddc1. These data suggest that, in a mecl-1 background, Dpb11 is important for the activation of Tell arter replication stress.

Fig.6 Possible model for Mec1 activation after replication stress.

To explain the redundant activity of Dpb11 and Ddc1 in activating Mec1 kinase we elaborated a model in which two distinct oppositions of Mec1 are activated independently either by 9-1-1 complex or Dpb11. Mec1 recruited on the lagging strand by sDNA is likely activated by PCNA-like, that has a \$ DNA end suitable for its loading. On the leading strand, without repriming events, there is no \$5 end useful for 9-1-1 loading: in this situation Mec1 could be activated by Dpb11, probably recruite through an interaction with DNA polymerase c.